
Database	Views	
&	Stored	Procedures

Hans-Petter	Halvorsen,	M.Sc.



SQL	Server

Hans-Petter	Halvorsen,	M.Sc.



Microsoft	SQL	Server

Write	your	Query	here

The	Results	from	your	Query

Your	Database

Your
Tables

Your	SQL	Server

1

2

3

4

5



Microsoft	SQL	Server	– Create	a	New	Database

Name	you	database	
according	to	your	Project

1

2



• Views:	Views	are	virtual	tables	for	easier	access	to	
data	stored	in	multiple	tables.

• Stored	Procedures:	A	Stored	Procedure	is	a	
precompiled	collection	of	SQL	statements.	In	a	
stored	procedure	you	can	use	if	sentence,	declare	
variables,	etc.	(like	a	Method	in	C#)

• Triggers:	A	database	trigger	is	code	that	is	
automatically	executed	in	response	to	certain	
events	on	a	particular	table	in	a	database.

• Functions:	With	SQL	and	SQL	Server	you	can	use	
lots	of	built-in	functions	or	you	may	create	your	
own	functions



Database	Design	– ER	Diagram
ER	Diagram	(Entity-Relationship	Diagram)	
• Used	for	Design	and	Modeling	 of	Databases.
• Specify	Tables	and	relationship between	them	(Primary	Keys	and	Foreign	Keys)

Primary	Key Primary	Key

Foreign	Key

Table	Name

Table	Name

Relational	Database.	In	a	relational	database	all	the	tables	have	one	or	more	relation	with	each	other	using	Primary	Keys	(PK)	and	
Foreign	Keys	(FK).	Note!	You	can	only	have	one	PK	in	a	table,	but	you	may	have	several	FK’s.

Column
Names

Example:





Lets	Create	these	Tables	using	SQL	Server



Views

Hans-Petter	Halvorsen,	M.Sc.



10

select
SchoolName,	
CourseName
from
SCHOOL	
inner	join	COURSE	on	SCHOOL.SchoolId =	COURSE.SchoolId

Example:

You	link	Primary	Keys	and	Foreign	Keys	together

Get	Data	from	multiple tables	in	a	
single	Query	using	Joins



Creating	Views	using	SQL	code
IF EXISTS (SELECT name

FROM   sysobjects
WHERE  name = 'CourseData' 
AND type = 'V')

DROP VIEW CourseData
GO

CREATE VIEW CourseData
AS

SELECT
SCHOOL.SchoolId, 
SCHOOL.SchoolName, 
COURSE.CourseId, 
COURSE.CourseName,
COURSE.Description

FROM
SCHOOL 
INNER JOIN COURSE ON SCHOOL.SchoolId = COURSE.SchoolId
GO

You	can	Use	the	View	as	an	
ordinary	 table	in	Queries:

A	View	is	a	“virtual”	table	that	
can	contain	data	from	multiple
tables

Inside	the	View	you	join	the	
different	 tables	together	using	
the	JOIN operator

The	Name	of	the	View

Create	View:

Using	the	View:

This	part	is	not	necessary	– but	if	you	make	any	
changes,	you	need	to	delete	the	old	version	before	
you	can	update	it

select * from CourseData

1

2



Creating	Views	using	the	Editor

Add	necessary	tables Copy	the	SQL	Code	and	Create	a	New	Script	in	
the	Management	Studio

Graphical	Interface	where	you	can	select	columns	you	need
1

2

3

4



View	Template
IF EXISTS (SELECT name

FROM   sysobjects
WHERE  name = '<ViewName>' 
AND type = 'V')

DROP VIEW <ViewName>
GO

CREATE VIEW <ViewName>
AS

SELECT
<TableName>.<ColumnName>,
<TableName>.<ColumnName>,
<TableName>.<ColumnName>,
<TableName>.<ColumnName>,
<TableName>.<ColumnName> 

FROM
<TableName1>
INNER JOIN <TableName2> ON <TableName1>.<PrimKeyColumnName1> = <TableName2>.<PrimKeyColumnName2>
GO



Creating	Views	- Exercise

GetBookChapters



Create	the	View	GetBookChapters



IF	EXISTS	(SELECT	name	
FROM			sysobjects	
WHERE		name	=	'GetBookChapters'	
AND			type	=	'V')

DROP	VIEW	GetBookChapters
GO

CREATE	VIEW	GetBookChapters
AS

SELECT								
BOOK.BookId,	
BOOK.BookTitle,	
BOOK.Summary,	
CHAPTER.ChapterNumber,	
CHAPTER.ChapterTitle

FROM	BOOK	
INNER	JOIN	CHAPTER	ON	BOOK.BookId	=	CHAPTER.BookId

GO

“GetBookChapters”	View



Stored	Procedures

Hans-Petter	Halvorsen,	M.Sc.



Stored	Procedure
IF	EXISTS	 (SELECT	name

FROM			sysobjects
WHERE		name =	 'StudentGrade'	
AND	 type	=	 'P')

DROP	PROCEDURE	StudentGrade
GO

CREATE	PROCEDURE	StudentGrade
@Student	varchar(50),
@Course	varchar(10),
@Grade	varchar(1)

AS

DECLARE
@StudentId int,
@CourseId int

select	@StudentId =	StudentId	from	STUDENT	where	StudentName=	@Student

select	@CourseId =	CourseId from	COURSE	where	CourseName=	@Course

insert	into	GRADE	(StudentId,	CourseId,	Grade)	
values (@StudentId,	@CourseId,	@Grade)
GO

execute StudentGrade 'John Wayne', 'SCE2006', 'B'

A	Stored	Procedure	is	like	a	Method	in	C#	- it	
is	a	piece	of		code	with	SQL	commands	that	
do	a	specific		task	– and	you	reuse	it

Input	Arguments
Internal/Local		Variables

Procedure	Name

SQL	Code	(the	“body”	of	the	
Stored	Procedure)

Note!	Each	variable	starts	with	@

Create	Stored	Procedure:

Using	the	Stored	Procedure:

This	part	is	not	necessary	– but	if	you	make	any	
changes,	you	need	to	delete	the	old	version	before	
you	can	update	it

1

2



Stored	Procedure	Template
IF	EXISTS	(SELECT	name

FROM			sysobjects
WHERE		name =	'<StoredProcedureName>'	
AND	 type	=	'P')

DROP	PROCEDURE	<StoredProcedureName>
GO

CREATE	PROCEDURE	<StoredProcedureName>
@<InputVariable1>	<DataType>,
@<InputVariable2>	<DataType>
AS

DECLARE
@<InternalVariable1>	<DataType>,
@<InternalVariable2>	<DataType>

select	@<InternalVariable1>	=	<ColumnName>	 from	<TableName>	where	<ColumnName>	=	@<InputVariable1>	

insert	into	<TableName>	(<ColumnName1>,	 <ColumnName2>,	 ...)	values (@<InternalVariable1>,	@<Inputvariable1>,	...)
GO



Creating	Stored	Procedures	- Exercise

CreateBook(BookName,	Summary)

CreateChapter(BookName,	ChapterNumber,	ChapterTitle)



Create	the	Stored	Procedure
CreateBook(BookName,	Summary)



“CreateBook”	Stored	Procedure
IF	EXISTS	(SELECT	name	
FROM			sysobjects	
WHERE		name	=	'CreateBook'	
AND			type	=	'P')

DROP	PROCEDURE	CreateBook
GO

CREATE	PROCEDURE	CreateBook
@BookTitle	varchar(50),
@Summary	varchar(255)
AS

insert	into	BOOK	(BookTitle,	Summary)	values	(@BookTitle,	@Summary)

GO



Creating	Stored	Procedures	- Exercise

CreateBook(BookName,	Summary)

CreateChapter(BookName,	ChapterNumber,	ChapterTitle)



Create	the	Stored	Procedure
CreateChapter(BookName,	ChapterNumber,	ChapterTitle)



“CreateChapter”	Stored	Procedure
IF	EXISTS	(SELECT	name	
FROM			sysobjects	
WHERE		name	=	'CreateChapter'	
AND			type	=	'P')

DROP	PROCEDURE	CreateChapter
GO

CREATE	PROCEDURE	CreateChapter
@BookTitle	varchar(50),
@ChapterNumber	int,
@ChapterTitle	varchar(50)
AS

DECLARE
@BookId	int

select	@BookId	=	BookId	from	BOOK	where	BookTitle	=	@BookTitle

insert	into	CHAPTER(BookId,	ChapterNumber,	 ChapterTitle)	values	 (@BookId,	@ChapterNumber,	@ChapterTitle)
GO



Hans-Petter	Halvorsen,	M.Sc.

University	College	of	Southeast	Norway
www.usn.no

E-mail:	hans.p.halvorsen@hit.no
Blog:	http://home.hit.no/~hansha/


